ВентФасад Проект

Ленинградская обл., Подпорожский район, г. Подпорожье, ул. Красноармейская, д.13

РАБОЧАЯ ДОКУМЕНТАЦИЯ

Устройство навесной фасадной системы с воздушным зазором "Вектор-1" Облицовка плитами из керамического гранита с открытым креплением

12-05-2021-НВФ

Санкт-Петербург 2021г.

Ведомость чертежей

Лист	Наименование	Примечание
1	Титульный лист	
2	Ведомость чертежей. Ведомость ссылочных документов	
3	Общие данные	
4	Цветовое решение. Раскладка плит облицовки. Фасад 1–32, Виды Д, Е, И, К	
5	Цветовое решение. Раскладка плит облицовки. Фасад 32-1	
6	Цветовое решение. Раскладка плит облицовки. Фасад А-Г, Г-А	
7	Цветовое решение. Раскладка плит облицовки. Виды А, Б, В, Г	
8	Раскладка подсистемы. Фасад 1–32, Виды Д, Е, И, К	
9	Раскладка подсистемы. Фасад 32–1	
10	Раскладка подсистемы. Фасад А-Г, Г-А	
11	Раскладка подсистемы. Виды А, Б, В, Г	
12	Образец пошагового монтажа	
13	Узел 1	
14	Узел 2, 3	'
15	Узел 4, 5	
16	Узел 6, 7	
17	Узел 8, 9	
18	Узел 10, 11	
19	Ведомость объемов работ. Ведомость объемов материалов.	
20	Статический расчет НВФ	

Ведомость ссылочных документов

Обозначение	Наименование	Примечание
СП 16.13330.2017	Стальные конструкции	
ГОСТ 23118-2012	Стальные конструкции. Общие технические условия.	
СП 70.13330.2012	Несущие и ограждающие конструкции	
СП 20.13330.2016	Нагрузки и воздействия	
СП 28.13330.2017	Защита строительных конструкций от коррозии.	
СП 131.13330.2018	Строительная климатология	
СП 12-135-2003	Безопасность труда в строительстве	
ATP	Система навесного вентилируемого фасада "Вектор"	

						12-05-2021	I–HB⊄	þ			
						Ленинградская обл., Подпор		•			
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	Подпорожье, ул. Красноармейская, д.13					
Разра	ιδοπαл	Прокоп	ьев О.Г			Навосной воншинанымий фасад	Стадия	Стадия Лист Лис			
Прове	epu <i>r</i> i	Некрас	сов С.А.			Навесной вентилируемый фасад с воздушным зазором	Р	2			
						Ведомость рабочих чертежей Ведомость ссылочных документов	Венп	ιΦαςαδ	Проект		

Общие указания

1. Исходные данные

1.1 Район строительства – Ленинградская обл., Подпорожский район, г. Подпорожье;

1.2 Климатические условия района строительства: – нормативное значение веса снегового покрова S_a на $1m^2$ горизонтальной поверхности для III-ого снегового района no CΠ 20.13330.2016 - 180 кг/м²:

- нормативное значение ветрового давления w_o на 1м² поверхности для II-ого ветрового района по СП 20.13330.2016

- 30 kz/m²;

- толщина стенки гололеда для I гололедного района

3 mm;

- mun местности по n.6.5 СП 20.13330.2016

- Б:

- расчетная отрицательная температура наиболее холодной пятидневки обеспеченностью 0,98 по СП 131.13330.2012 - минис 28°С;

- степень агрессивного воздействия среды на металлические конструкции по СП 28.13330.2012 – неагрессивная.

1.3. Проект конструкций выполнен соответствии со строительными нормами и правилами нарушение покрытия и коробление сборочных деталей. 16.13330.2017 «Стальные конструкции». 16.13330.2017 "Стальные конструкции", 28.13330.2012 "Защита строительных конструкций от непосредственно к элементам облицовки. коррозии" и СП 20.13330.2016 "Нагрузки и воздействия".

Привязка конструкций НФС осуществлена основании архитектирно-строительных чертежей высотным отметкам и разбивочным осям. В качестве исходных чертежей для проектирования использованы комплекты чертежей: 2018-81-М36-АС, кронштейнов; – утепления; – несущего каркаса; Геодезическая съемка.

Мероприятия против коррозии: в соответствии с стали, и профили и кронштейны из оцинкованной стали соответствии с защитным лакокрасочным покрытием.

Противопожарные мероприятия: в соответствии с требованиями нормативно-технической документации ПО обеспечению пожарной (Федеральный безопасности, закон om 22.07.2008 г. № 123-Ф3 «Технический регламент о требованиях пожарной безопасности», СНи Π 21–01–97 \star , класса пожарной опасности $H\Phi C$ KO по FOCT 31251).

Величина зазора между плитами принята 8 мм.

Применяемый облицовочный материал должен иметь ТС.

Разбивка цветов облицовочного материала соответствиет цветовоми решению фасадов.

Крепление кронштейнов осуществляется фасадные дюбели с антикоррозионным покрытием, Ø4х10мм к направляющим ТО. подобранные по результатам натурных испытаний на объекте по методике Росстроя РФ.

в спецификации.

Оконные обрамления и дверные обрамления, фасонные изделия изготавливать из оцинкованной дахвим крепятся к кронштейну. стали толщиной 0,5 мм, парапетные крышки пожарные отсечки из оцинкованной стали толщиной 0.7 анкером. Между стеной и кронштейном мм окрашенной согласно колористическому паспорту устанавливается термоизолирующая прокладка. объекта.

2,5d, расстояние от центра заклепки до края элемента _{крепления} и особенностям монтажа, а также - минимум 2d вдоль усилия, поперек усилия - 1,5d - для _{требования} пожарной безопасности приведены в стальных конструкций; между центрами заклепок - техническом свидетельстве № 5628-18. минимим 3d, от центра заклепки до края элемента, вдоль исилия - минимим 2,5d.

в НФС в проектное положение должны исключать согласно СП 20.13330.2016 «Нагрузки и воздействия», СП

Не допускается крепление каких-либо деталей

Во время строительных работ и последиющей на эксплуатации фасады должны быть защищены от к механических повреждений.

Выполнение монтажа НФС должно были подтверждено актами скрытых работ на установку: оконного обрамления.

Приемка элементов НФС, их хранение нормативной докиментацией поставляемые материалы.

2. Характеристика решений, принятых в проекте

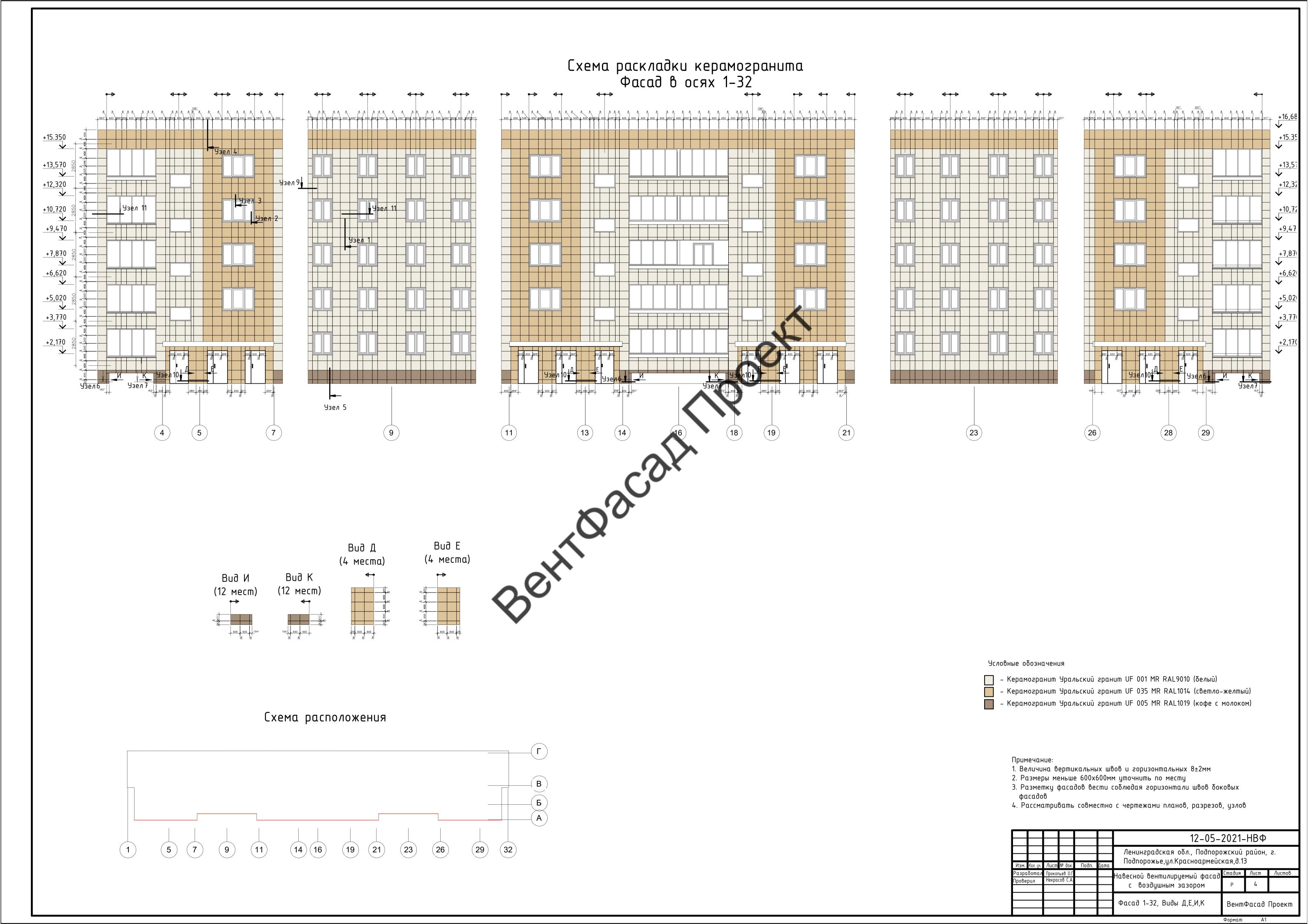
2.1 Керамогранитные плиты в системе "Вектор-1" на крепятся через кляммера с помощью заклепок А2/А2

2.2 Вертикальные направляющие с помощью 2-х заклепок А2/А2 Ø4х8мм крепятся к кронштейнам Для крепления элементов каркаса между собой (удлинителям кронштейна). Между направляющими применять метизы, определенные проектом и указанные оставляется зазор 10 мм для компенсации теплового расширения.

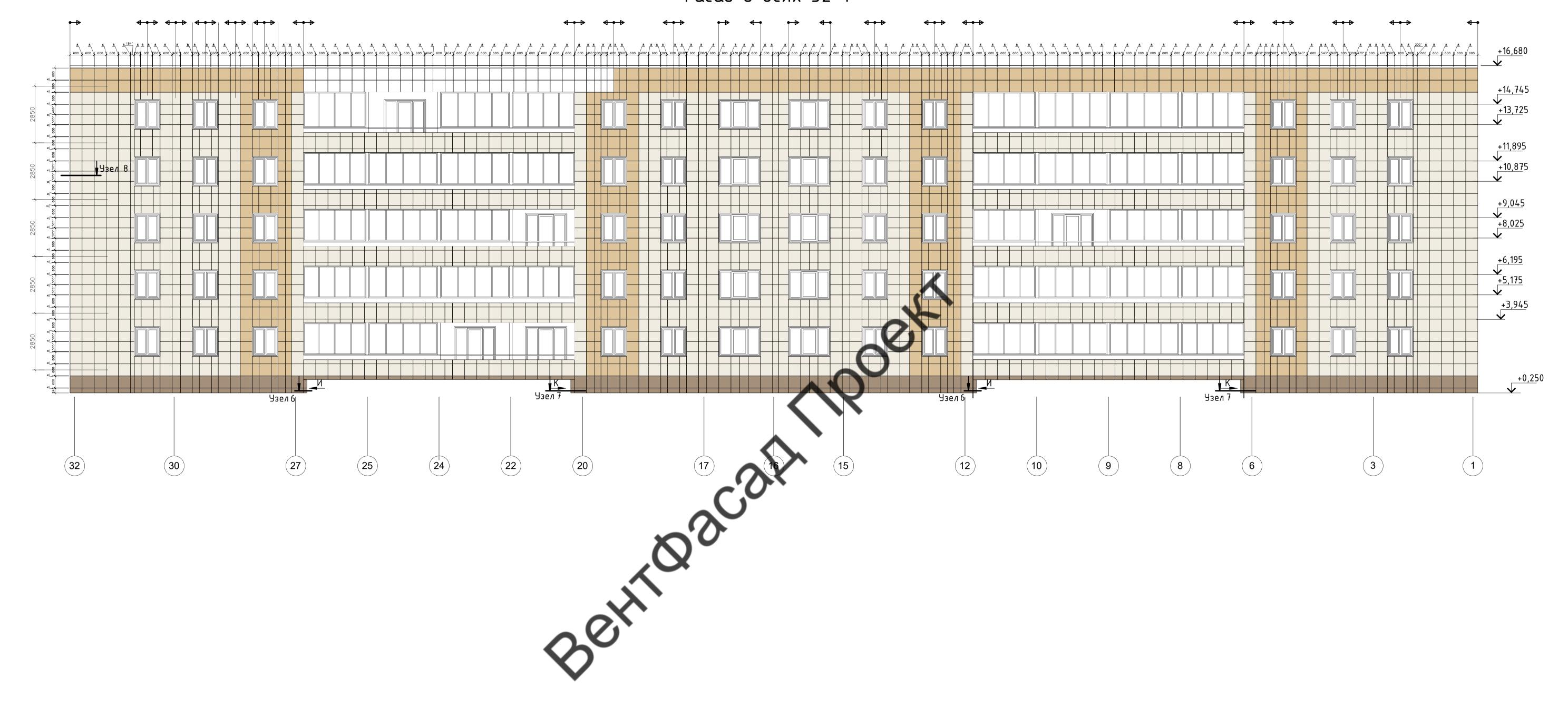
Z3 Удлинители с помощью 2-х заклепок A2/A2

2.4 Кронштейны крепятся к стене здания фасадным

2.5 Обязательные для выполнения требования к Расстояние между центрами заклепок – минимум комплектующим элементам и материалам, узлам


2.8 Расчеты несущей способности металлокаркаса, шагов установки кронштейнов, нагрузки на вырыв Технология изготовления и установка элементов анкера, усилия в заклепочном соединении выполнены

3. Обрамления проемов


3.1 По периметру сопряжения навесной фасадной системы с оконными проемами устанавливаются противопожарные короба из оцинкованной стали с полимерным покрытием толщиной 0,5 мм.

3.2 Верхний и боковой откос обрамления проемов должны иметь выступы шириной не менее 35мм. Верхние и боковые откосы окон обязательно крепятся на НФС применяются заклепки из коррозионностойкой строительной площадке должны осуществляться в к строительному основанию с помощью пожарных вертикальным направляющим, расположенным вдоль и над оконными (дверными) проемами.

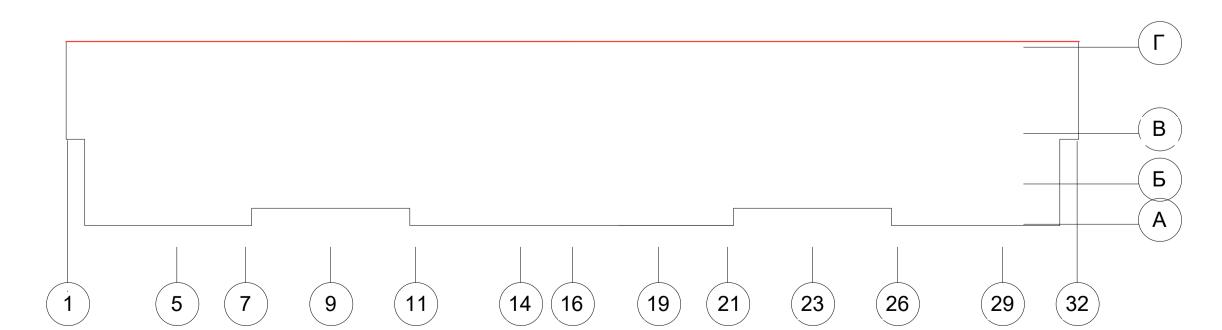
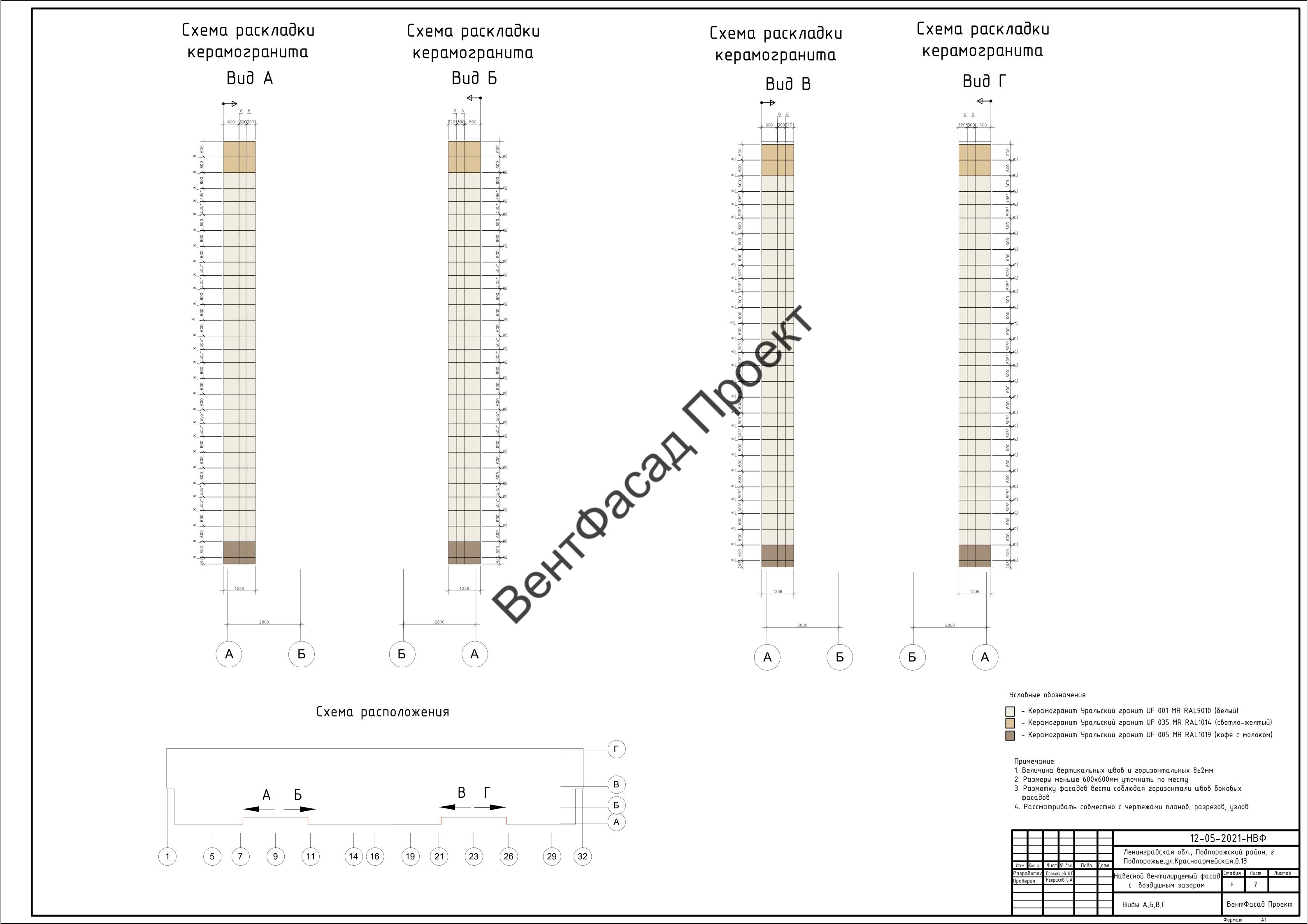
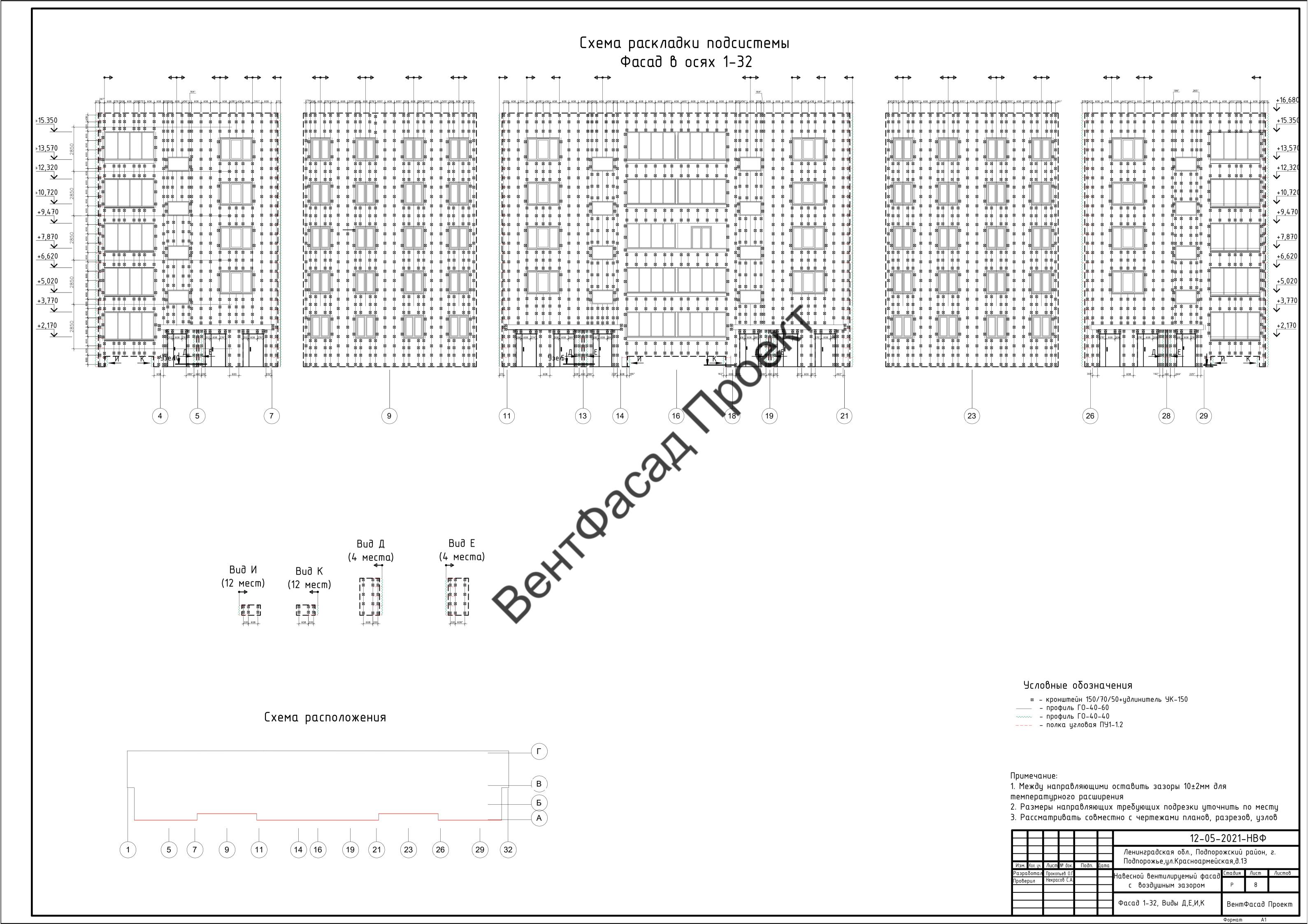

					12-05-2021	I_HB4	<u> </u>			
					12 12 23					
					Ленинградская обл., Подпорожский район, г. Подпорожье, ул. Красноармейская, д.13					
	Кол. уч.			Дата	Подпорожье, ул. Красноармейская, д.13					
Разра	ιδοπαл	Прокоп	ьев О.Г		Навесной вепшилингиемий фасад	Стадия	Стадия Лист Листо			
Прове	epu <i>r</i> i	Некра	сов С.А.		Навесной вентилируемый фасад с воздушным зазором	Р	3			
					Оршпе данняе	Венп	Проект			

Схема раскладки керамогранита Фасад в осях 32–1

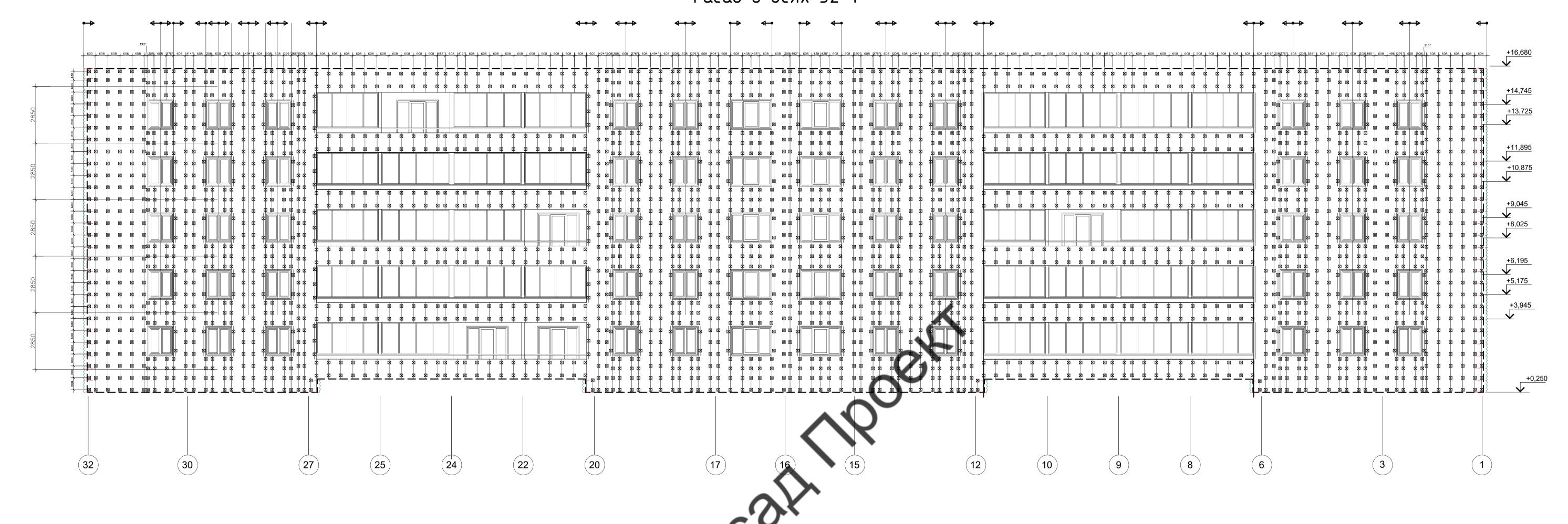
Схема расположения

Условные обозначения


- Керамогранит Уральский гранит UF 001 MR RAL9010 (белый)
- Керамогранит Уральский гранит UF 035 MR RAL1014 (светло-желтый)
- Керамогранит Уральский гранит UF 005 MR RAL1019 (кофе с молоком)


Примечание:

- 1. Величина вертикальных швов и горизонтальных 8±2мм
- 2. Размеры меньше 600х600мм уточнить по месту
 3. Разметку фасадов вести соблюдая горизонтали швов боковых фасадов
- 4. Рассматривать совместно с чертежами планов, разрезов, узлов


					12-05-	2021-	-НВФ	
Изм Кол	уч. Лист	№ dok	Подп.	Лата	Ленинградская обл., Подпорс Подпорожье,ул.Красноармейс		•	2.
Разрабоп Проверил	ал Проко			диши ———	Навесной вентилируемый фасад с воздушным зазором	Стадия	/lucm	Листов
					Фасад 32-1	Вент	Фасад	Проект

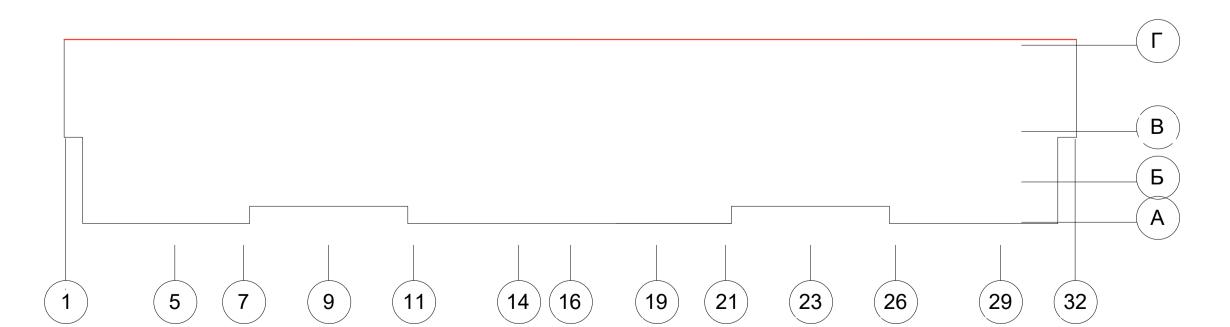
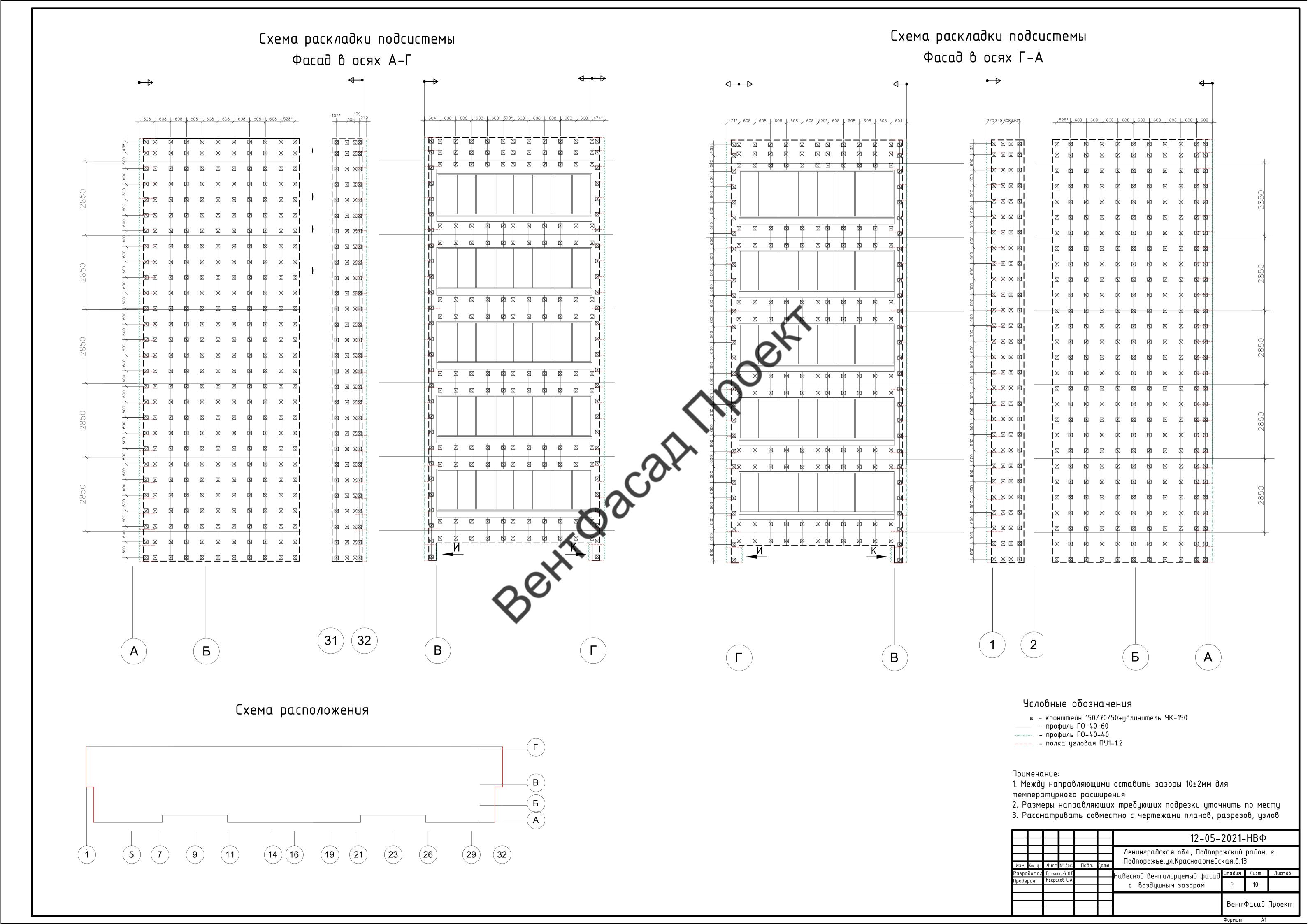
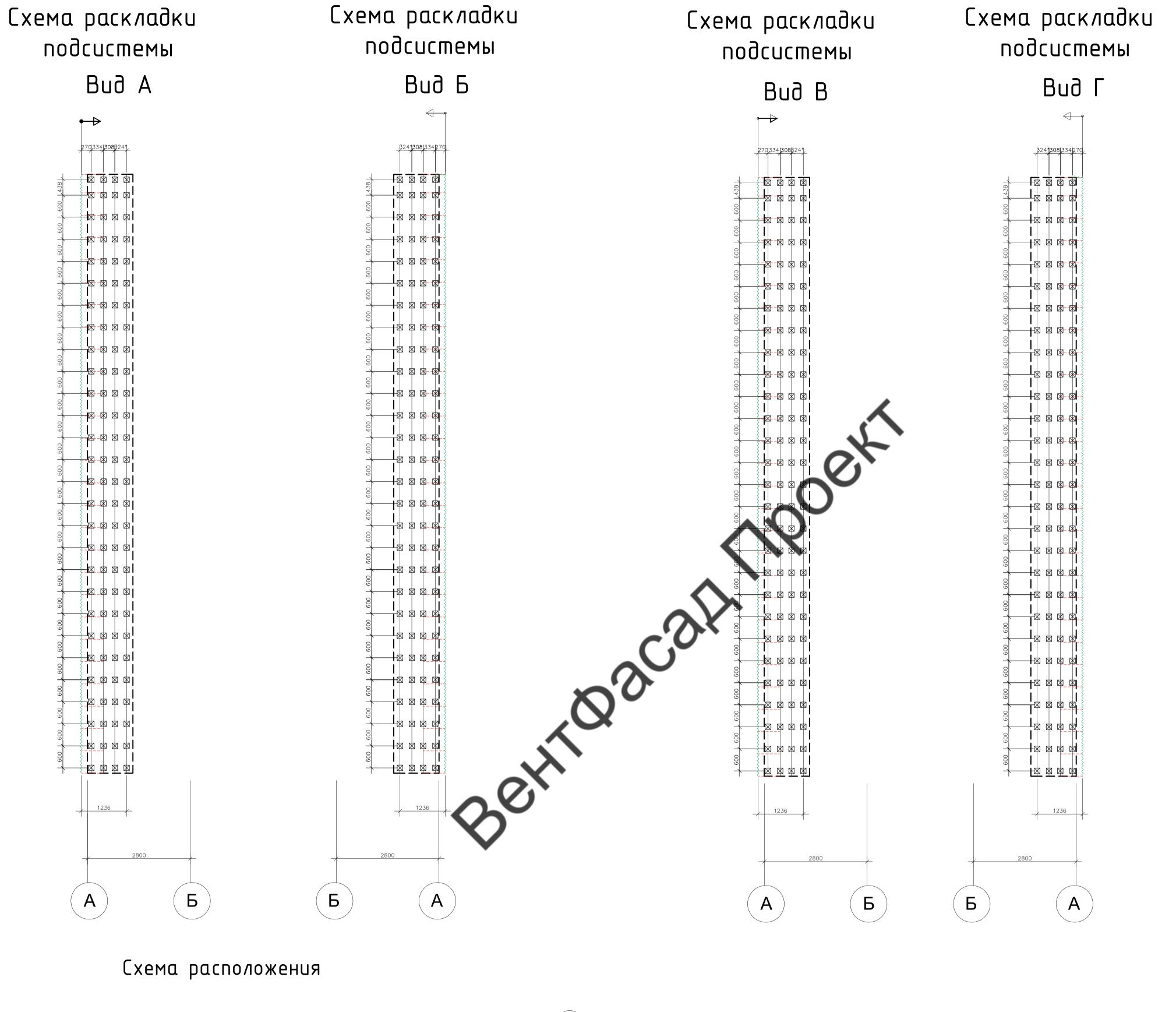
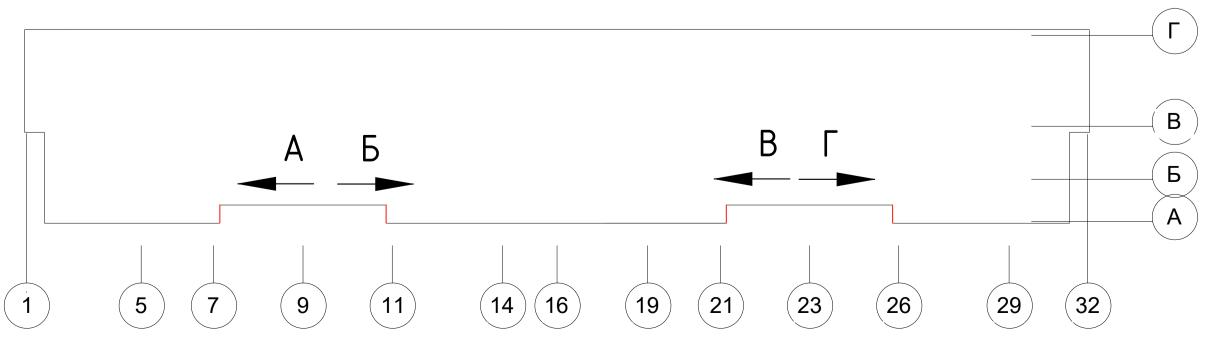


Схема раскладки подсистемы Фасад в осях 32–1

Схема расположения

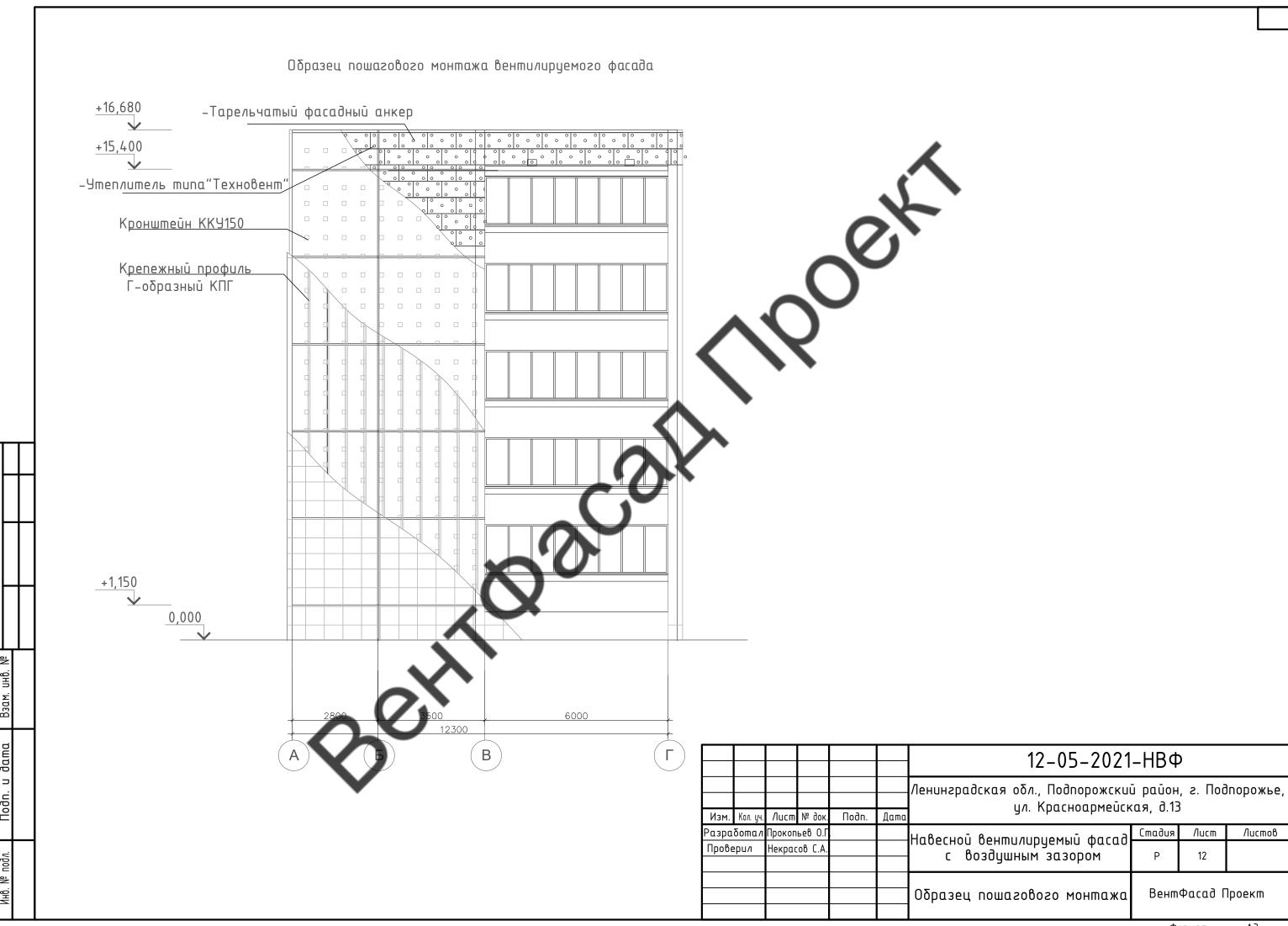


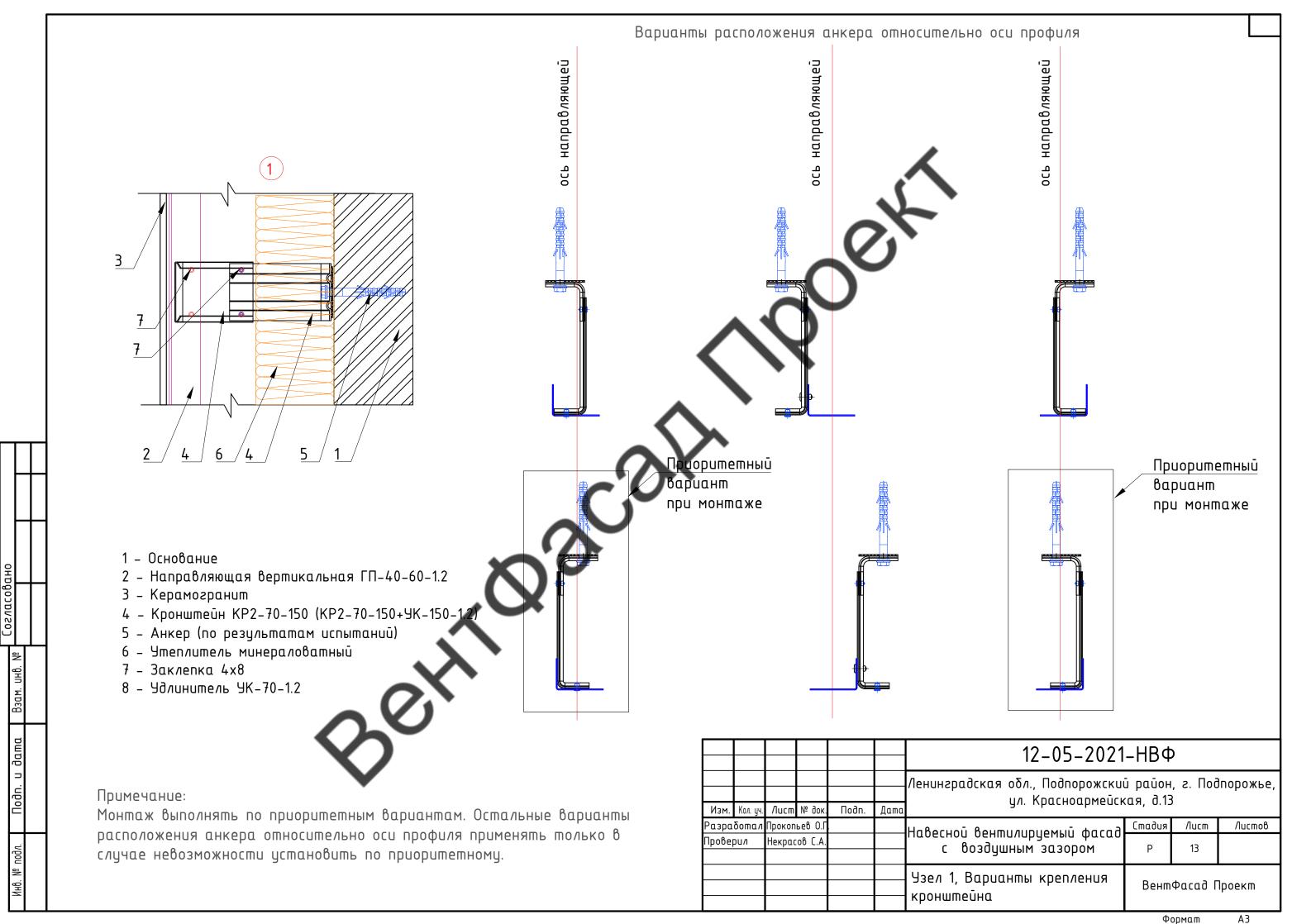

Условные обозначения

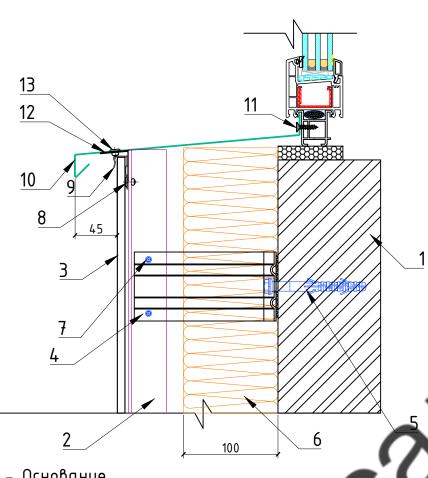

- npoфиль ГО-40-40
- ---- полка угловая ПУ1-1.2

- 1. Между направляющими оставить зазоры 10±2мм для температурного расширения
- 2. Размеры направляющих требующих подрезки уточнить по месту
- 3. Рассматривать совместно с чертежами планов, разрезов, узлов

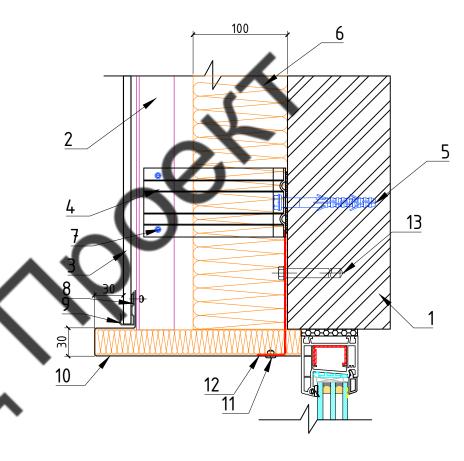
			12-05-	2021-	НВФ	
			·		•	2.
Лист № док.	Подп.	Дата	Поопорожье,ул.красноармеас	кия, о. т.		
Прокопьев О.Г			Навесной веншилириемый фасад	Стадия	/lucm	Листов
Некрасов С.А.			с воздушным зазором	Р	9	
			Фасад 32-1	Вент	Фасад	Проект
	Прокопьев О.Г	Прокопьев О.Г	Прокопьев О.Г	Лист № док. Подп. Дата Прокопьев О.Г Некрасов С.А. С воздушным зазором	Лист № док. Подп. Дата Прокопьев О.Г Некрасов С.А. С воздушным зазором Р	Прокольев О.Г. Некрасов С.А. с воздушным зазором Р 9

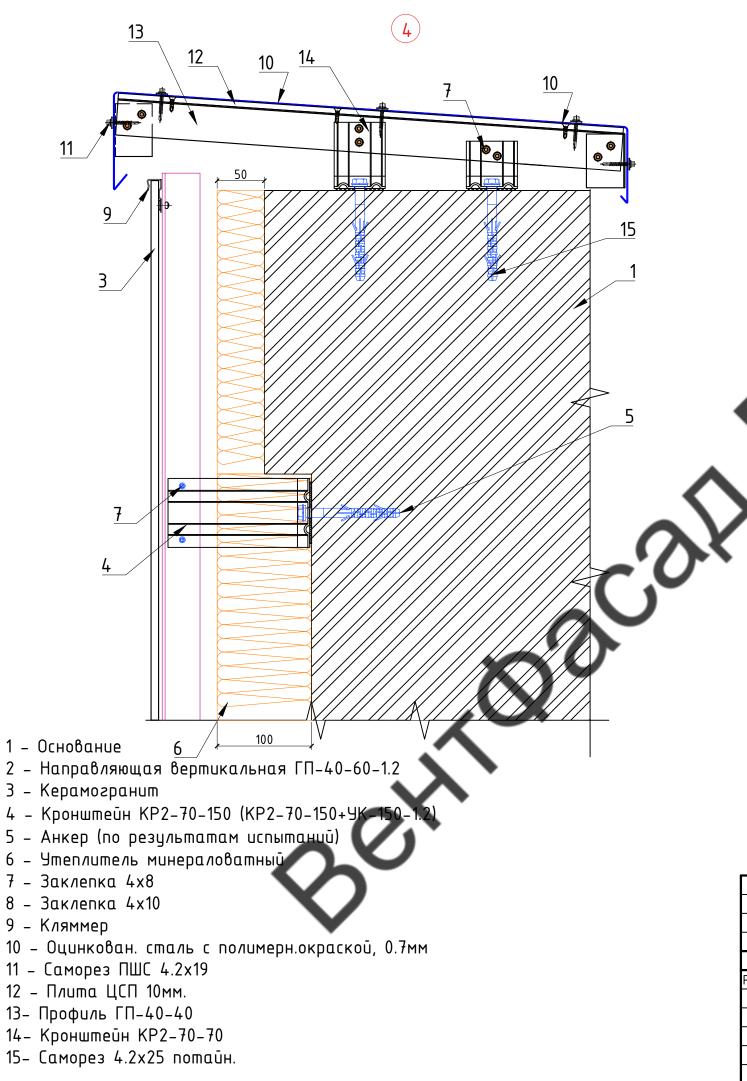



Условные обозначения


- кронштейн 150/70/50+удлинитель УК-150
 профиль ГО-40-60
 профиль ГО-40-40
 полка угловая ПУ1-1.2

- 1. Между направляющими оставить зазоры 10±2мм для температурного
- 2. Размеры направляющих требующих подрезки уточнить по месту
- 3. Рассматривать совместно с чертежами планов, разрезов, узлов

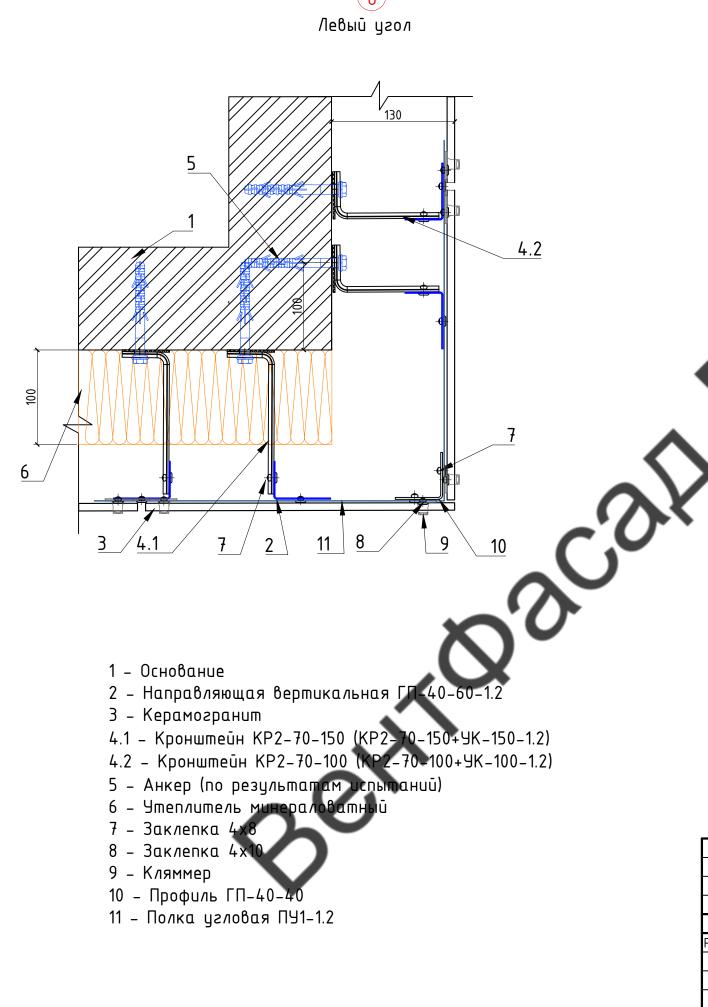

				12-05-	2021-	-НВФ	
				Ленинградская обл., Подпоро		•	2.
Изм. Кол. у	ч. Лист № док.	Подп.	Дата	Подпорожье,ул.Красноармейс	кия, о. т.) 	
Разработс	ил Прокопьев О.Г			Навесной вентилируемый фасад	Стадия	Лист	Листов
Проверил	Некрасов С.А.			с воздушным зазором	D	11	
				с оозоушным зизором	Г	- 11	
				Виды А,Б,В,Г	Вент	Фасад	Проекп
i							

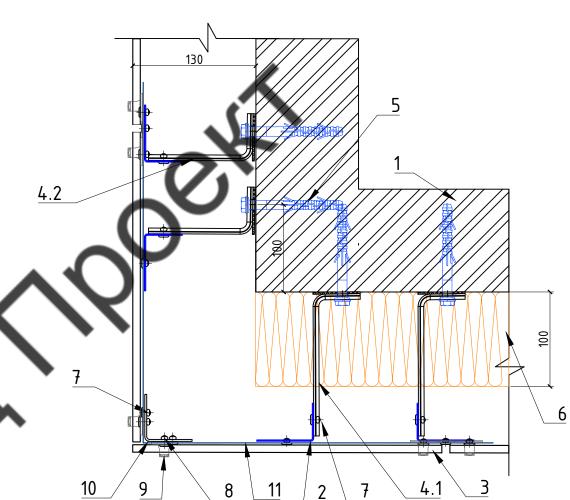


- 1 Основание
- 2 Направляющая вертикальная ГП-40-60-1.2
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+9K-150-1.2)
- 5 Анкер (по результатам испытаний
- 6 Утеплитель минераловать
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 10- Оцинкован. сталь с полимерн.окраской, 0.5мм
- 11 Саморез ПШС 4,2х19
- 12 Уголок оцинкованный 30х30 0,7мм
- 13 Заклепка 4х8 окраш.

- 1 Основание
- 2 Направляющая вертикальная ГП-40-60-1.2
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+УК-150-1.2)
- 5 Анкер (по результатам испытаний)
- 6 Утеплитель минераловатный
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 10 Оцинкован. сталь с полимерн.окраской, 0.5мм
- 11 Заклепка 4х8 окраш.
- 12 Оцинкован. сталь, 0.7мм
- 13 Дюбель-гвоздь 6х60

						12-05-2021	–HB⊄)			
						енинградская обл., Подпорожский район, г. Подпорожье ил Красноармейская д 13					
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	ул. Красноармейская, д.13					
Разра	азработал Прокопьев О.Г.					Habocuoù boumuaupuomuñ dacad	Стадия	/lucm	Листов		
Прове	≘рил	Некрас	ов С.А.			Навесной вентилируемый фасад с воздушным зазором	Р	14			
						Узел 2, 3	Вент	Фасад Г	lpoekm		

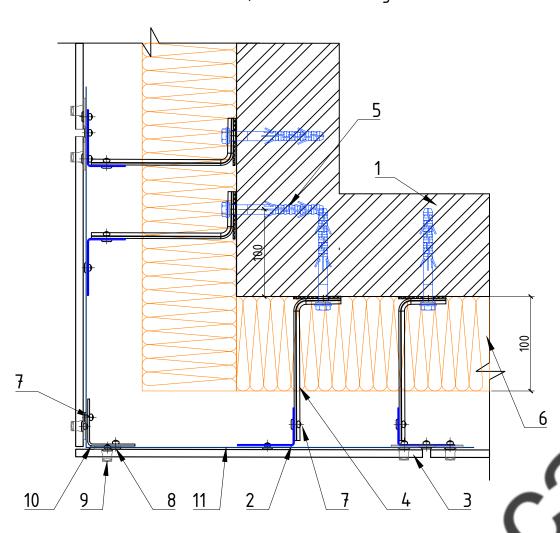



9 8 2 9 10 5

- 1 Основание
- 2 Направляющая вертикальная ГП-40-60-1.2
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+УК-150-1.2)
- 5 Анкер (по результатам испытаний)
- 6 Утеплитель
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 10 Дюбель-гвоздь 6х60
- 11 Заклепка 4х8 окраш.
- 12 Оцинкован. сталь, 0.7мм (перфорирован.)

						12-05-2021	–HB⊄)		
						енинградская обл., Подпорожский район, г. Подпорожье ул. Красноармейская, д.13				
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	ул. Красноармеиская, d.13				
Разра	δοπαν	Прокоп	ьев О.Г			Навесной вентилируемый фасад	асад Стадия Лист Лист			
Прове	.ботал Прокопьев О.Г. ерил Некрасов С.А.					с воздушным зазором	Р	15		
						Узел 4, 5	Вент	Фасад Г	lpoekm	

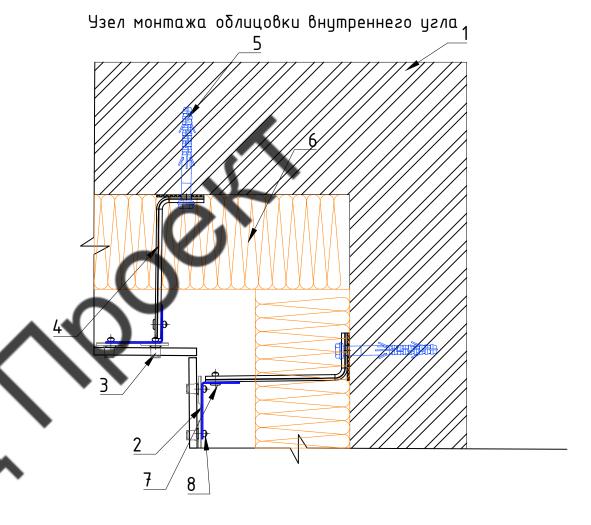
Формат

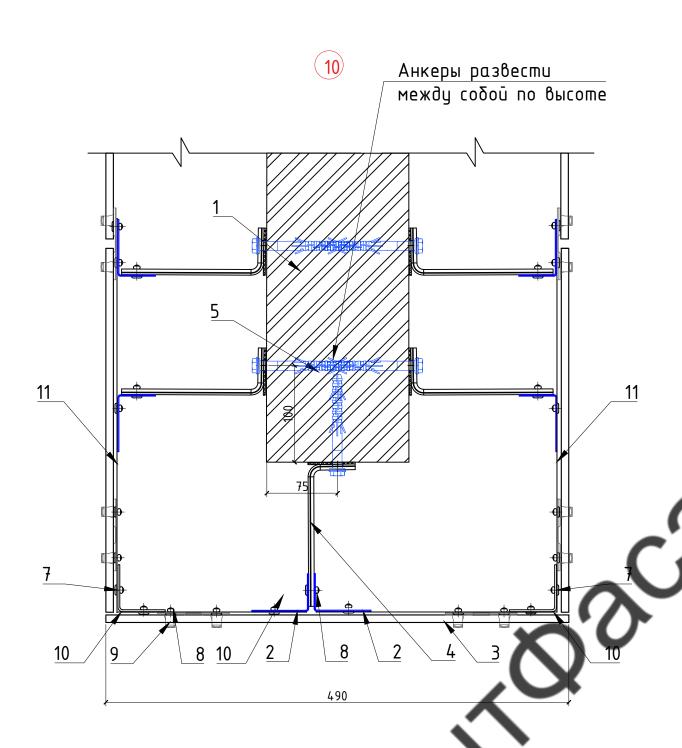


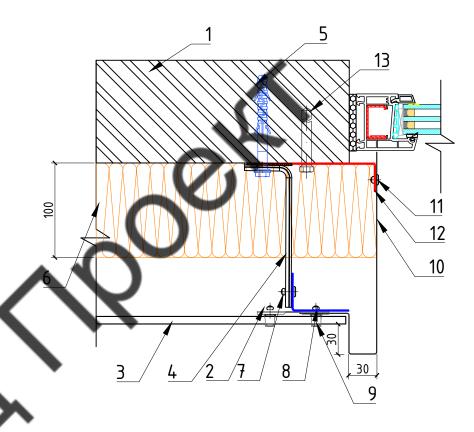
Правый угол

						12-05-2021	−HB¢)			
						Ленинградская обл., Подпорожский район, г. Подпорожье ул. Красноармейская, д.13					
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	ул. Красноармеаск	.шл, О.12				
Разра	ботал	Прокоп	ьев О.Г			Навосной воншинивномий фасад	Стадия	/lucm	Листов		
Прове	epu <i>r</i> i	отал Прокопьев О.П. Некрасов С.А.				Навесной вентилируемый фасад с воздушным зазором	Р	16			
						Узел 6, 7	Вент	Φαςαд Γ	lpoekm		

8


Узел монтажа облицовки внешнего угла


- 2 Направляющая вертикальная ГП-40-60-1.2
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+УK-150-1.2)
- 5 Анкер (по результатам испытаний)
- 6 Утеплитель минераловатный
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 10 Профиль ГП-40-4
- 11 Полка угловая ПУ 1-1.2


- 1 Основание
- 2 Направляющая вертикальная ГП-40-60-1.2
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+УК-150-1.2)
- 5 Анкер (по результатам испытаний)
- 6 Утеплитель
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 0 Дюбель-гвоздь 6х60
- 11 Заклепка 4х8 окраш.
- 12 Оцинкован. сталь, 0.7мм

						12-05-2021	−HB¢)				
							енинградская обл., Подпорожский район, г. Подпорожье, ул. Красноармейская, д.13					
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	ул. красноармеаская, оло						
Разра	.ботал	Прокоп	ьев О.Г			Навосной волшнанымый фасад	Стадия	/lucm	Листов			
Прове	Разработал Прокопьев О.П. Проверил Некрасов С.А.					Навесной вентилируемый фасад с воздушным зазором	Р	17				
						Узел 8, 9	Вент	lpoekm				

- 1 Основание
- 2 Направляющая вертикальная ГП-40-60-1.
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+УК-150-1.2)
- 5 Анкер (по результатам испытаний)
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 10 Профиль ГП-40-40
- 11 Полка угловая ПУ 1-1.2

- 1 Основание
- 2 Направляющая вертикальная ГП-40-60-1.2
- 3 Керамогранит
- 4 Кронштейн KP2-70-150 (KP2-70-150+УК-150-1.2)
- 5 Анкер (по результатам испытаний)
- 6 Утеплитель минераловатный
- 7 Заклепка 4х8
- 8 Заклепка 4х10
- 9 Кляммер
- 10 Оцинкован. сталь с полимерн.окраской, 0.5мм
- 11 Заклепка 4х8 окраш.
- 12 Оцинкован. сталь, 0.7мм
- 13- Дюбель- гвоздь 6х60

						12-05-2021	−HB¢)			
						енинградская обл., Подпорожский район, г. Подпорожье, ул. Красноармейская, д.13					
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата	3 1 1	pachoapheackan, 6.15				
Разра	азработал Прокопьев О.Г					Іавесной вентилируемый фасад ^{Стадия} Лист Ли					
Прове	Разрадотал Прокопьев С Проверил Некрасов С					с воздушным зазором	Р	18			
						Узел 10, 11	Вент	Іроект			

Ведомость объемов материалов

Те неволя в Керпетиона «Супок кат краст С. н. от МВ

05-130381

Process Proc		Ck1 (00)	u	8299	5)	3388
	٧	•		45	5,0	1537
	i		16	103	: ,11	:F.
	÷	Куленер славёры, вурошеници	ur	بار ت)	4920
	1,	Колинец стортойно, околониянной	1 F	Hu	ı	Mik
Process Proc	lı	Колиме предостава и поливай	IF	15.5	i	1111
	#2 - C13L	,		ı		
	HP	Pr. Hebert d. E	71.15 %	Kun-Eu	500.00-26	1 xmm;en
Separation Policial Sci 2012 Policy PC SCS S S S	•	Sales a creek 1938 - 23 de 24 kom n. 1990 -	F.	TK.)	4.	יעו
Committee Comm	٧	¹ веглитесь РОСВ (АЛИ) (В каси (Б. 1904))	F	7.0	4	1
S	3	Smorthumeru PO-Delfal 35, 90 (com 0 th/20-m	FΞ	3 03	5	3
	÷	1.80cm number 1800 (1900)	u	E7):		10)5(
P	5	த்திரும் மெரும் நடித்திரும் 1 05,95	u	90	•	s30
P	é	Вътръцистити наябрити Н	r:	3699	F	2840
Epistania Control Control	100000					
Process Proc	יון		58.C:+.	Kon to	Parac 🛝	Сратаски
			u	8(2)	•	\$l3·
S	٠	·	11	Ju I		.11
	5	•	ur	B)		DZ
The content of the	L ,	Чилиния вы на 1970	11	501	•	8.0
The Section of Control of Contr	6	Sána-crische (k70-156	u	7(9)	•	ilve
# File ground Secret Sergins	7	Funce geneta: N97-13	.11	612		634
##	٥	ր-1թական 40թ9թվ3 արգ ու	.11	£1(0	5	1.0
HT	ų	F To spurs 40540012 paps in	4 Γ	27.5	5	250
		<u> </u>				
2 3 3 3 4 3 4 3 4 4 3 4 4	H	In Holosoft o	0.17-	Kina Fi	Jarac V	2010114
2	•	Хакер - a : практ то разгласти па и потиоти	1.	E3.71		עד
Transferent (in the 1,5074 1m 100 10 100 1			u	55156	-	61570
1 Плетиферація (праві 1,5574 год) по 100 100 100 100 100 100 100 100 100 10						
5 Сиссебент-Сей бант 4 Fo27 h m2		· ·				
In Должик поблада (пр. 1001) Im About III No. 00 1001 HD 076-618. Не Не Нацияновация (Поли и последний посл		' '			* •	
Не	_					
## Packerologicals		<u> </u>		$\boldsymbol{\smile}$		
. Про мостом. Стистика Сбоим махобыр жат 1900 иг постой том стистика. Сбоим махобыр жат 1900 иг постой стистика теофосирова и до Гом и го						
150 150				Num-Cu	eurut. X	t zalata
10 10 10 10 10 10 10 10	•	incherine)	X /	12(F	756
San One Court San 10"	v		Y	124		2000
5 Cent 6 955 me publik 305mme RAL mm 460 10 506 6 Februari 5.7 mm basic 350mm RAL mm 462 10 202	i	·	чг	122		500
6 Face on \$.7 on cost. 350 m 5 kg in 10 202	· ·	Cavet 1.55 nm pas6 Altern RAL	.11	706	1)	178
		Care 6 955 mar 2020, 305mma RAL	'11	46)	1)	806
7			111	102	1)	
1	ī	Szon e SCOR, papie, more CP 4-	11	214	D	236

Kan Ba

Jarar V

1 виплетем

Ведомость объемов работ

H	Та нагот не	1417	K13 F1
•	Si erze-re riber Difficiali	-77	2111
2	Mara de opcasioni-st	-2	5678
3	For the no patients as	- <u>-</u>	3015
<u>:</u>	Банта керангазан п		Sut.
4	hasan sa apara anar sangga panggas I Jakrasi	чn	30.
Ps.	Кантор проводинестные своения (найжа)	9.0	55%
Ŧ	На тре проводностью выставо не Сроен.	*111	1(6
0	ho may omystop, ompopol	1 N	1745
•	hа поверствое помогна селенова	4.0	112
D	ho mae umaraunaen no onecocom	1 N	6 92

						12-05-2021-НВФ			
						Ленинградская обл., Подпорожский район, г. Подпорожье ул. Красноармейская, д.13			Эпорожье,
Изм.	Кол. уч.	/lucm	№ док.	Подп.	Дата				
Разра	ботал	Прокоп	ьев О.Г			Навесной вентилируемый фасад Стадия Лист Листов		Листов	
Прове	≥рил	Некрас	:ов С.А.			с воздушным зазором	Р	19	
						Ведомость объемов работ. Ведомость материалов.	ВентФасад Проект		lpoekm

СТАТИЧЕСКИЙ РАСЧЕТ навесной фасадной системы с воздушным зазором "BEKTOP-1"

Облицовка керамогранитными плитами

Конструктивная схема "Тип-1" (крепление в керамзитобетонную панель

по адресу:

Ленинградская обл., Подпорожский район, г. Подпорожье, ул. Красноармейская, д.13

 Выполнил
 Платонова М.А.

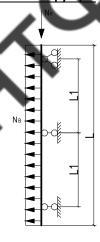
 Проверил
 Купряшин С.Ю.

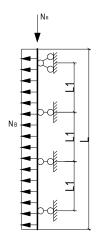
г.Санкт-Петербург, 2021г.

1

Содержание

1.	Исходные данные	2
2.	Характеристики материалов	2
3.	Расчетные схемы конструкции	2
4.	Сбор нагрузок	3
	4.1 Постоянные нагрузки	. 4
	4.2 Временные нагрузки	3
	4.3 Сочетания нагрузок	4
5.	Расчет усилий в анкерных элементах	
6.	Расчет несущих кронштейнов	7
7.	. Расчет кронштейн-удлинителя	9
8.	Расчет несущего профиля	10
	8.1 Расчет несущего профиля в рядовой зоне	10
	8.2 Расчет несущего профиля в угловой зоне	11
9.	Расчет прочности заклепочного соединения кронштейна и удлинителя	12
10.	. Расчет прочности заклепочного соединения направляющей и удлинителя	13
12.	. Выводы и рекомендации	14
13.	. Нормативная документация	15


1. Исходные данные


Материал несущих кронштейнов Оцинкованная сталь марки 08пс Материал несущих вертикальных профилей Оцинкованная сталь марки 08пс Тип облицовки Керамогранит **KP2-70** Несущий кронштейн Удлинитель кронштейна УК-70-1,2 ГП-60-40-1,2 Несущий вертикальный профиль в рядовой зоне Несущий вертикальный профиль в угловой зоне ГП-60-40-1,2 b 608 мм Горизонтальный шаг между направляющими в рядовой зоне b 608 Горизонтальный шаг между направляющими в угловой зоне MM 10 t Толщина облицовочного материала MM Подпорожье Город строительства Ветровой район строительства [2] П Гололедный район строительства [2] В Тип местности (согласно п.11.1.6 [2]) 28 Высота здания от поверхности земли h Вынос облицовочного материала е 180 N_{a_max} 2220 Усилие на вырыв анкерного элемента 3000 Длина вертикальной направляющей L 800 L_1 Вертикальный шаг кронштейнов в рядовой зоне Вертикальный шаг кронштейнов в угловой зоне


2. Характеристики материалов

25 кг/м2 $\mathbf{q}_{\mathsf{H_обл}}$ Масса одного квадратного метра облицовочного материала 1.1 Коэффициент надежности по нагрузке для облицовки (по таб. 7.1 [2]) $\gamma_{\rm обл}$ 0.92 кг/м Масса одного погонного метра несущего вертикального профиля в рядовой напр 0.92 кг/м q_{H} Масса одного погонного метра несущего вертикального профиля в угловой зон 1.05 Коэффициент надежности по нагрузке для вертикального напр 1.0 Коэффициент надежности по ответственности здания (по таб Ϋ́n R_{yn} 230 Мпа Нормативное сопротивление оцинкованной стали (по табл. 6. $R_y = R_{yn}/\gamma_m$ Расчетное сопротивление оцинкованной стали (п табл.6.1 1.025 где **ү**_m - коэффициент надежности по ма γm R_v 2250 кг/см2 Ε 2,1*10^10 кг/м2 Модуль упругости стали

3. Расчетные схемы конструкции

Оци

кованн

сталь марки 08пс

схема с 2мя пролетами

схема с 3мя пролетами

схема с 4мя пролетами

L - Длина вертикальной направляющей

L₁ - Вертикальный шаг кронштейнов

4. Сбор нагрузок

4.1. Постоянные нагрузки

1.1 Расчетное значение нагрузки от веса облицовки определяется по формуле:

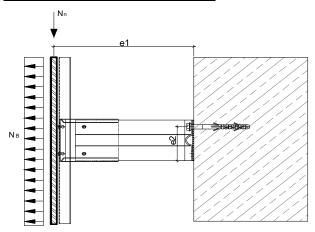
	q _{обл} = q _{н_обл} •ұ _{обл}			
		\mathbf{q}_{ofn}	27.5	кг/м2
1.1 Расчетное значение нагрузки от веса вертикаль	ной направляющей опре	еделяется п	о формуле:	
	$q_{\text{Hanp}} = q_{\text{H}_{\text{Hanp}}} \cdot \gamma_{\text{Hanp}}$			
	для рядовой зоны	\mathbf{q}_{Hanp}	1.0	кг/м
	для угловой зоны	Q	1.0	кг/м

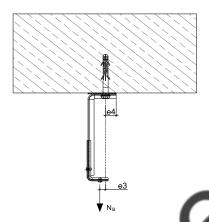
4.2. Временные нагрузки

4.2.1 Ветровая нагрузка

Нормативное пиковое значение ветровой нагрузки определяется по формуле:

Нормативное пиковое значение ветровой нагрузки определяется по форм $\mathbf{W_{H}} = \mathbf{W_{0}} \cdot \mathbf{k}(\mathbf{z_{e}}) \cdot (1 + \boldsymbol{\zeta}(\mathbf{z_{e}}) \cdot (\mathbf{z_{e}}) \cdot $			
Нормативное значение давления ветра, принимаемое в зависимости от			
ветрового района ([2], табл.11.1)	\mathbf{w}_0	30	кт/м2
Коэффициент, учитывающий изменение давлений ветра для высоты \mathbf{z}_{e}	k(z _e)	0.98	•
Коэффициент, учитывающий изменение пульсаций давления ветра для высоты \mathbf{z}_{e}	ζ(z _e)	0.86	<
Эквивалентная высота	₹ _e	•	•
Аэродинамический коэффициент:	•		
для рядовой зоны	C_{p}	-1.2	
для угловой зоны	C _p	-2.2	
Коэффициент корреляции ветровой нагрузки ([2], табл.11.8)	X	1	
Расчетное пиковое значение ветровой нагрузки определяется по формул $\mathbf{W}_{\mathrm{p}} = \mathbf{W}_{\mathrm{H}} \mathbf{Y}_{\mathrm{B}}$			
Коэффициент надежности по нагрузке для ветровой нагрузки	ү в	1.4	
Расчетное пиковое значение ветровой нагрузки:			
для рядовой зоны	W_p	92.1	кг/м2
для угловой зоны	\mathbf{W}_{p}	168.9	кг/м2
4.2.2 Гололедная нагрузк <mark>а</mark>			
Нормативное значение поверхностной гололедной нагрузки $i_{\mu} = b \cdot k(z) \cdot \mu_{2} \cdot g \cdot \rho$			
Нормативное значение толщины стенки гололеда, принимаемое в	b	3	
зависимости от гололедного района ([2], табл.12.1)	D	3	MM
Коэффициент, учитывающий изменение толщины стенки гололеда по высоте ([2], табл.12.2, табл.12.3)	k(z)	1.6	
Коэффициент, учитывающий отношение площади поверхности		0.6	
элемента, подверженной обледенению, к полной площади поверхности обледенения	μ_2	0.6	
Ускорение свободного падения	g	9.8	m/c2
Плотность льда	ρ	0.9	г/см3
Расчетное значение поверхностной гололедной нагрузки			
i _p =i _H ·γ _f			
Коэффициент надежности по нагрузке для гололедной нагрузки	У гол	1.8	
	i _p	4.6	кг/м2


4.3. Сочетание нагрузок


4.3.1 Первое сочетание нагрузок

а) вертикальные составляющие нагрузки	
для рядовой зоны П_{обл}+П_{мет}= 29.1	кг/м2
для угловой зоны П_{обл}+П_{мет}= 29.1	кг/м2
а) горизонтальные составляющие нагрузки	
Для рядовой зоны	
П _{ветер} = 92.1	кг/м2
Для угловой зоны	
П _{ветер} = 168.9	кг/м2
4.3.2 Второе сочетание нагрузок	
Для рядовой зоны	
Π _{гол} +0,6Π _{ветер} = 59.8	кг/м2
Для угловой зоны	
$\Pi_{\text{ron}} + 0.6\Pi_{\text{Berep}} = 105.9$	кг/м2

<u>Первое сочетание</u> нагрузок является наибольшим, в дальнейших расчетах принимаем эти значения.

5. Расчет усилий в анкерных элементах

Усилие вырыва анкерного элемента определяется по формуле:

Нагрузка от собственного веса облицовки и направляющей определяется по формуле:

$N_n = (q_{o6n} \cdot b +$	۱٫۱ م.		
N _π – (4 _{06л} ·υ+	ЧнапрЈ°∟1		
Расчетное значение нагрузки от веса облицовки	q _{обл}	27.5	кг/м2
Расчетное значение нагрузки от веса вертикальной направляющей			
для рядовой	й зоны q_{напр}	1.0	кг/м
для угловой	ізоны q_{напр}	1.0	кг/м
Горизонтальный шаг вертикальных направляющих в рядовой зоне	e b	608	MM
Горизонтальный шаг вертикальных направляющих в угловой зоне	b	608	MM
Вертикальный шаг кронштейнов в рядовой зоне	և	800	MM
Вертикальный шаг кронштейнов в угловой зоне		600	MM
Плечо от вертикальной приложенной нагрузки на анкерный элеме	нт 61	175	MM
Плечо от ветровой нагрузки на анкерный элемент	e ₂	36	MM
Плечо от ветровой нагрузки на анкерный элемент	e ₃	8	MM
Плечо от ветровой нагрузки на анкерный элемент	e ₄	19	MM
Нагрузка от собственного веса в рядовой зоне	N_{n}	14.1	кг
Нагрузка от собственного веса в угловой зоне	N _n	10.6	кг

Максимальная опорная реакция от ветровой на	грузки определяется по	формуле:			
20	$N_B = W_p \cdot L_1 \cdot b \cdot k_{Hep}$				
Расчетное пиковое значение ветровой нагрузки дл	ія рядовой зоны	W_p	92.1	кг/м2	
Расчетное пиковое значение ветровой нагрузки дл	ія угловой зоны	W_p	168.9	кг/м2	
Максимальная опорная реакция от ветровой нагру	/зки				
	для рядовой зоны	N_{Bp}	49.3	кг	
	для угловой зоны	N_{Bp}	70.4	КГ	
Допустимое усилие на вырыв анкерного элемента					
	$N_{a \mu} = N_{a max}/g$				
ускорение свободного падения	= =	g	9.8	m/c2	
0		N _{а_д}	226.5	КГ	
Определяем усилие, действующее на анкерный эл	іемент:				

 N_{a}

 N_a

138.8

151.7

ΚГ

ΚГ

⇒ Условие прочности выполнено в рядовой зоне

для рядовой зоны

для угловой зоны

⇒ Условие прочности выполнено в угловой зоне

226.5

226.5

ΚГ

ΚГ

6. Расчет несущих кронштейнов

Расчетные напряжения в сечении несущего кронштейна, возникающие от ветровой и весовой нагрузки, в наиболее нагруженном **сечении 1-1** (консоль у основания кронштейна):

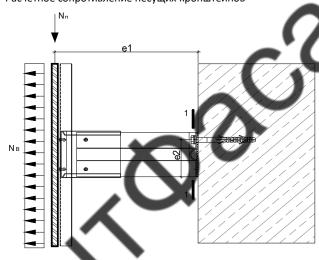
$$\boldsymbol{\zeta_{1}}_{-1} = \frac{\boldsymbol{M_{x}}}{\boldsymbol{W_{x}}} + \frac{\boldsymbol{M_{y}}}{\boldsymbol{W_{y}}} + \frac{\boldsymbol{N_{B}}}{\boldsymbol{A}} \, \leq \boldsymbol{R_{y}}$$

Момент сопротивления сечения	W_x	1887	ммЗ
Момент сопротивления сечения	W_y	94	ммЗ
Площадь поперечного сечения	Α	158	мм2
Нагрузка от собственного веса в рядовой зоне	N _n	14.1	кг
Нагрузка от собственного веса в угловой зоне	N_n	10.6	кг

Максимальный момент от собственного веса

$$M_x = N_n \cdot e_1$$

Плечо от вертикальной приложенной постоянной нагрузки	$\mathbf{e_1}$	175	MM
для рядовой зоны	M_{x}	248	кг*см
для угловой зоны	M_{x}	186	кг*см


Максимальный момент от ветровых нагрузок

$$M_y = N_B \cdot e_5$$

Плечо от ветровой нагрузки
Максимальная опорная реакция от ветровой нагрузки

, для рядовой зоны для угловой зоны	N _B	49.3 70.4	K F
для рядовой зоны	M _y	94	кг*см
для угловой зоны	M _y	134	кг*см

Расчетное сопротивление несущих кронштейнов

Расчетное напряжение

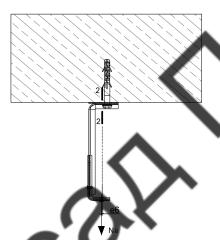
для рядовой зоны

для угловой зоны

1 1 e5 N_B

2250

ζ ₁₋₁	1159	кг/см2	≤	2250.0	кг/см2
ζ_{1-1}	1566	кг/см2	≤	2250.0	кг/см2


кг/см2

Условие прочности выполнено в рядовой зоне Условие прочности выполнено в угловой зоне Расчетные напряжения в сечении несущего кронштейна, возникающие от ветровой и весовой нагрузки, в наиболее нагруженном **сечении 2-2** (по шайбе анкера):

$$\zeta_{2-2} = \frac{M_v}{W_y} \le R_y$$

гπ	Δ	•
1 4	c	

Момент сопротивления сечения	W_y	88.00	MM3
Максимальный момент от ветровых нагрузок			
$M_{y} = N_{B} \cdot e_{6}$			
Максимальная опорная реакция от ветровой нагрузки			
для рядовой зоны	$N_{\scriptscriptstyle B}$	49.3	кг
для угловой зоны	$N_{\scriptscriptstyle B}$	70.4	кг
Плечо от ветровой нагрузки	\mathbf{e}_{6}	5	MM
для рядовой зоны	M _y	25	кг*см
для угловой зоны	M_{y}	35	кг*см
Расчетное сопротивление несущих кронштейнов	R_y	2250	кг/см2

Расчетное напряжение для рядовой зоны для угловой зоны

ζ_{1-1}	280	кг/см2	≤	2250.0	кг/см2
$\zeta_{1\text{-}1}$	400	кг/см2	≤	2250.0	кг/см2

⇒ <u>Условие прочности выполнено в рядовой зони</u>

7. Расчет кронштейн-удлинителя

Расчетные напряжения в сечении доборного элемента, возникающие от ветровой и весовой нагрузки, в наиболее нагруженном сечении:

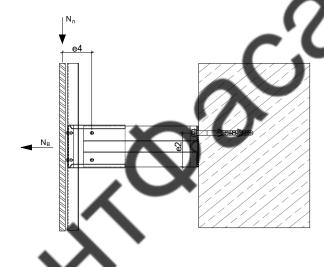
$$\mathbf{\zeta}_{\mathrm{y}\mathrm{g}} = rac{\mathrm{M}_{\mathrm{x}}}{\mathbf{W}_{\mathrm{x}}} + rac{\mathrm{M}_{\mathrm{y}}}{\mathbf{W}_{\mathrm{y}}} + rac{\mathbf{N}_{\mathrm{B}}}{\mathbf{A}} \, \leq \mathbf{R}_{\mathbf{y}}$$

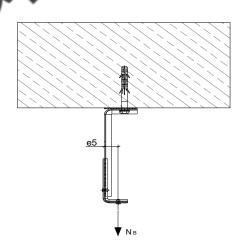
Параметры ослабленого сечения доборного элемента:

Момент сопротивления сечения	W_x	1908	ммЗ
Момент сопротивления сечения	W_y	60	ммЗ
Площадь поперечного сечения	Α	109	мм2
Нагрузка от собственного веса в рядовой зоне	N _n	14.1	кг
Нагрузка от собственного веса в угловой зоне	N _n	10.6	кг

Максимальный момент от собственного веса

 $M_x = N_n \cdot e_4$


Плечо от вертикальной приложенной постоянной нагрузки	e_4	80	MM
	M_{x}	113	кг*см
	M_{x}	85	кг*см


Максимальный момент от ветровых нагрузок

 $M_v = N_B \cdot e_5$

Плечо от ветровой нагрузки		e ₅	13	MM
Максимальная опорная реакция от ветровой нагрузки	I			
	для рядовой зоны	N _E	49.3	КГ
	для угловой зоны	N _B	70.4	кг
	для рядовой зоны	M _v	64	кг*см
	для угловой зоны	M _y	92	кг*см

Расчетное сопротивление несущих кронштейнов

2250

кг/см2

Расчетное напряжение для рядовой зоны для угловой зоны

$\zeta_{yд}$	1172.5	кг/см2	≤	2250.0	кг/см2
$\zeta_{_{ m YZ}}$	1634.9	кг/см2	≤	2250.0	кг/см2

Условие прочности выполнено в рядовой зоне Условие прочности выполнено в угловой зоне

8. Расчет несущего профиля

8.1 Расчет несущего профиля в рядовой зоне

Расчет направляющей на прочность выполняется по формуле:

$$G_{H} = \frac{M_{x}}{W_{y}} + \frac{N_{H}}{A} \leq R_{y}$$

где:

Момент сопротивления сечения	W_{x}	543	мм3
Площадь поперечного сечения	Α	118	мм2
Собственный вес конструкции	N_n	13	кг
Расчетное сопротивление несущих кронштейнов	R_{v}	2250	кг/см2

Максимальный момент от ветровой нагрузки на опоре для двухпролетной балки определяется по формуле:

 $\mathbf{M}_{\mathrm{x}} = \mathbf{0.100} \ \mathbf{W}_{\mathrm{p}} \cdot \mathbf{b} \cdot \mathbf{L}_{\mathbf{1}}^{2}$

где:

Расчетное пиковое значение ветровой нагрузки для рядовой зоны $\mathbf{W_p}$ 92.1 кг/м2 Горизонтальный шаг между направляющими в рядовой зоне \mathbf{b} 608 мм Вертикальный шаг кронштейнов в рядовой зоне $\mathbf{L_1}$ 800 мм Максимальный момент от ветровой нагрузки на опоре: для рядовой зоны $\mathbf{M_x}$ 358 кг*см

Расчетные напряжения в направляющей: для рядовой зоны

ζ_H 671.5 κг/cм2 ≤ 2250.0 κг/cм2

⇒ Условие прочности выполнено в рядовой зоне

8.1.1 Расчет деформаций в несущем профиле в рядовой зоне

Прогиб направляющей в пролете L_1 определяется по формуле:

 $f = 0.00675 \cdot \frac{q_{\rm H} \cdot L_1^4}{E \cdot Ix}$

где:

 Вертикальный шаг кронштейнов в рядовой зоне
 L1
 800
 мм

 Момент инерции в сечении
 J_x
 17074
 мм4

 Модуль упругости стали
 E
 2,1*10^10
 кг/м2

Нормативная ветровая нагрузка определяется по формуле:

 $\mathbf{q}_{\scriptscriptstyle\mathrm{H}} = \mathbf{W}_{\scriptscriptstyle\mathrm{p}} \cdot \mathbf{b}/\mathbf{1}$,4

Максимально допустимые деформации в пролете длиной L_1

 $f_{max} = \frac{L_1}{150} \qquad \qquad f_{max} \qquad \qquad 5.3 \qquad \qquad MM$

Максимальная расчетная деформация:

для рядовой зоны

⇒ Условие деформации выполнено в рядовой зоне

8.2 Расчет несущего профиля в угловой зоне

Расчет направляющей на прочность выполняется по формуле:

$$G_{H} = \frac{M_{x}}{W_{x}} + \frac{N_{n}}{A} \leq R_{y}$$

где:

Момент сопротивления сечения	W_x	543	ммЗ
Площадь поперечного сечения	Α	118	мм2
Собственный вес конструкции	N _n	10	кг
Расчетное сопротивление несущих кронштейнов	R_{y}	2250	кг/см2

Максимальный момент от ветровой нагрузки на опоре для трехпролетной балки определяется по формуле:

 $\mathbf{M}_{\mathrm{x}} = \mathbf{0.107} \ \mathbf{W}_{\mathrm{p}} \cdot \mathbf{b} \cdot \mathbf{L}_{1}^{2}$

где:

Расчетные напряжения в направляющей:

для угловой зоны

ζ_H 739.8 κг/cм2 ≤ 2250.0 κг/cм2

Условие прочности выполнено в угловой зоне

8.2.1 Расчет деформаций в несущем профиле в угловой зоне

Прогиб направляющей в пролете L_1 определяется по формуле:

 $f = 0.0063 \cdot \frac{\mathbf{q}_{\mathrm{H}^{-1}}}{E \cdot 1}$

где:

Вертикальный шаг кронштейнов в угловой зоне

L1 600 мм

Момент инерции в сечении

Модуль упругости стали

E 2,1*10^10 кг/м2

Нормативная ветровая нагрузка определяется по формуле:

 $\mathbf{q}_{\scriptscriptstyle\mathrm{H}} = oldsymbol{W}_{\scriptscriptstyle\mathrm{p}} \cdot oldsymbol{b}/\mathbf{1}$,4

Максимально допустимые деформации в пролете длиной L_1

 $f_{max} = \frac{L_1}{150} \qquad \qquad f_{max} \qquad \qquad 5.3 \qquad \qquad MM$

Максимальная расчетная деформация:

для угловой зоны

f 0.2 mm ≤ 5.3 mm

⇒ Условие деформации выполнено в угловой зоне

9. Расчет заклепочного соединения кронштейна и удлинителя

Расчет срез

Прочность заклепочных соединений на срез определяется по формуле:

$$\mathbf{N}_s = \frac{\sqrt{(\mathbf{N_\pi}^2 + \mathbf{N_B}^2)}}{\mathbf{n_{_{\mathrm{3aK}}}}\mathbf{n_{_{\mathrm{Cpe3}}}}} \leq \ \mathbf{N_s^{max}}$$

•					
Количество заклепок	n _{зак}	2	ШТ		
Количество плоскостей среза	n _{cpe3}	1	шт		
Коэффициент надежности по материалу соединения на заклепках	Y _{mc}	1.25			
Нормативное сопротивление на срез	N ^H s	3100	Н		
Максимально допустимое усилие на срез определяется по формуле:					
$N_s^{max} = N_s^H/(ymc \cdot g)$				•	
ускорение свободного падения	g	9.8	m/c2		~
	N_s^{max}	253.06	кг		
Нагрузка от собственного веса в рядовой зоне	N_{n}	14.1	кг		1
Нагрузка от собственного веса в рядовой зоне	N _n	10.6	КГ		,
Максимальная опорная рекция от ветровой нагрузки					
для рядовой зоны	$N_{\scriptscriptstyle B}$	49.3	Kľ		
для угловой зоны	N _B	70.4	КГ		
Усилие среза в одной заклепке:			_		
для рядовой зоны	N.	25.6	КГ	≤ 253.06	5 кг

35.6

4.2

MM

253.06

Условие прочности выполнено в рядовой зоне
 Условие прочности выполнено в угловой зоне

Расчет на смятие

Диаметр отвертия для заклепки

для угловой зоны

Прочность заклепочных соединений на смятие определяется по формуле:

$$N_s = \frac{\sqrt{(N_{\scriptscriptstyle B}^2 + N_{\scriptscriptstyle B}^2)}}{n_{\scriptscriptstyle AM} dt} \le R$$

Минимальная толщина склепываемых материалов	t	1.2	MM		
Предел текучести материала заклепки	R_3	2650	кг/см2		
Расчет прочности заклепочных соединений на смятие:	_				
для рядовой зоны	N	508.7	кг/см2	≤	2650.0 кг/см2
для угловой зоны	N	706.5	кг/см2	≤	2650.0 кг/см2

Условие прочности выполнено в рядовой зоне
Условие прочности выполнено в угловой зоне

10. Расчет заклепочного соединения удлинителя и направляющей

Расчет срез

Прочность заклепочных соединений на срез определяется по формуле:

$$\mathbf{N}_{s} = \frac{\sqrt{(\mathbf{N}_{_{\Pi}}^{2} + \mathbf{N}_{_{\mathbf{B}}}^{2})}}{\mathbf{n}_{_{_{\mathrm{3AK}}}}\mathbf{n}_{_{\mathrm{cpe3}}}} \leq \mathbf{N}_{s}^{\mathrm{max}}$$

•					
Количество заклепок	n _{зак}	2	ШТ		
Количество плоскостей среза	n _{cpes}	1	шт		
Коэффициент надежности по материалу соединения на заклепках	Y _{mc}	1.25			
Нормативное сопротивление на срез	N ^H s	3100	Н		
Максимально допустимое усилие на срез определяется по формуле:					
$N_s^{max} = N_s^H/(ymc \cdot g)$				•	
ускорение свободного падения	g	9.8	m/c2		
	N_s^{max}	253.06	кг		
Нагрузка от собственного веса в рядовой зоне	N_{π}	14.1	кг		1
Нагрузка от собственного веса в рядовой зоне	N _n	10.6	КГ		,
Максимальная опорная рекция от ветровой нагрузки					
для рядовой зоны	$N_{\scriptscriptstyle B}$	49.3	KI		
для угловой зоны	N _B	70.4	КГ		
Усилие среза в одной заклепке:					
для рядовой зоны	N.	25.6	КГ	≤ 253.06	ь кг

35.6

4.2

MM

253.06

Условие прочности выполнено в рядовой зоне
 Условие прочности выполнено в угловой зоне

Расчет на смятие

Диаметр отвертия для заклепки

для угловой зоны

Прочность заклепочных соединений на смятие определяется по формуле:

$$N_s = \frac{\sqrt{(N_{_{\rm II}}^2 + N_{_{\rm B}}^2)}}{n_{_{\rm DW}} dt} \le R$$

Минимальная толщина склепываемых материалов	t	1.2	MM		
Предел текучести материала заклепки	R_3	2650	кг/см2		
Расчет прочности заклепочных соединений на смятие:	_		_		
для рядовой зоны	N	508.7	кг/см2	≤	2650.0 кг/см2
для угловой зоны	N	706.5	кг/см2	≤	2650.0 кг/см2

Условие прочности выполнено в рядовой зоно

11. Выводы

Система навесного вентилируемого фасада "Вектор-1" с применением

- кронштейна
- кронштейн-удлинителя
- несущего профиля в рядовой зоне
- несущего профиля в угловой зоне (min 1,5м от угла)

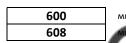
KP2-70

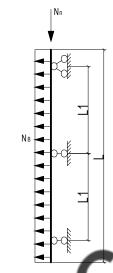
УК-70-1,2

ГП-60-40-1,2

ГП-60-40-1,2

допустима к применению на объекте со следующими схемами крепления элементов подсистемы, полученные на основании проведенных расчетов:


Рядовая зона:


- тах шаг кронштейнов (на направляющую длиной 3м)
- тах шаг направляющих

800 mm 608 mm

Угловая зона (тіп 1,5м от угла):

- тах шаг кронштейнов (на направляющую длиной 3м)
- тах шаг направляющих

12. Нормативная документация

- 1. СНиП II-23-81* СП 16.13330.2017 "Стальные конструкции"
- 2. СНиП 2.01.07-85* СП 20.13330.2016 "Нагрузки и воздействия"
- 3. ГОСТ 27751-2014 "Надежность строительных конструкций и оснований"
- 4. СП 260.1325800.2016 "Конструкции стальные тонкостенные из холодногнутых оцинкованных профилей и гофрированных листов. Правила проектирования"
- 5. CHиП 3.03.01-87* СП 70.13330.2012 "Несущие и ограждающие конструкции"
- 6. СНиП 2.03.11-85* СП 28.13330.2017 "Защита строительных конструкций от коррозии"
- 7. ГОСТ 14918-80 "Сталь тонколистовая оцинкованная с непрерывных линий"
- 8. СТО-44416204-010-2010 "Крепления анкерные. Метод определения несущей способности по результатам натурных испытаний"
- 9. Альбом технических решений системы навесного вентилируемого фасада "Вектор-1"